Abstract

The surface tension of electrolyte solutions exhibits a minimum at millimolar electrolyte concentrations and then rises with increasing concentration. This minimum, known as the Jones-Ray effect, has been hotly debated over the past ∼80years. If not considered as an artifact, it is typically ascribed to a phenomenological rare binding site for ions or ion pairs. Here, we propose an alternative underlying mechanism, namely that the hydrogen bond network of water responds to the collective electrostatic field of ions by increasing its orientational order, supported by recent surface tension measurements of NaCl solutions in H2O and D2O, and second harmonic scattering experiments in combination with ion resonant second harmonic reflection experiments. Recent thermodynamic and purely electrostatic treatments of the surface tension provide support for this interpretation. In addition, concerns related to possible artifacts influencing the measurements are quantified experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.