Abstract

AbstractWe solve a joint similarity problem for pairs of operators of Foias–Williams/Peller type on weighted Bergman spaces. We show that for the single operator, the Hardy space theory established by Bourgain and Aleksandrov–Peller carries over to weighted Bergman spaces, by establishing the relevant weak factorizations. We then use this fact, together with a recent dilation result due to the first author and Rochberg, to show that a commuting pair of such operators is jointly polynomially bounded if and only if it is jointly completely polynomially bounded. In this case, the pair is jointly similar to a pair of contractions by Paulsen’s similarity theorem.AMS 2000 Mathematics subject classification: Primary 47B35; 47B47

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.