Abstract

Polders can be found in coastal and alluvial lowlands all over the world. These polders need an internal drainage system consisting of drainage canals, weirs and/or pumps to discharge the water out of the polder. Next to these drainage canals, dikes can protect the low-lying polder areas that are situated several meters lower than the controlled water levels in these canals. This study investigates the joint impact of extreme rainfall events on water and dike systems within Dutch polders. Previous research has shown that the combined effect of heavy rainfall and storm surge can increase flood risk in coastal polders in the Netherlands. However, the impact of extreme rainfall on multiple water-and-dike systems within a single polder, resulting in multiple hazards, has received little attention. Our analysis uses physical models that are calibrated on measurements and forced by synthetic rainfall and evaporation time series to examine the response time and interdependencies between regional drainage systems and pore-water pressures in canal dikes. Water levels and pore-water pressures and their interrelationships were analyzed as indicators of flood hazards. Our findings demonstrate the importance of considering the joint impact of multiple hazards on flood risk in polders, as the functioning of regional drainage systems and canal dikes can be affected by similar weather events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.