Abstract

In contrast to individual tasks, a specific social setting is created when two partners work together on a task. How does such a social setting affect memory for task-related information? We addressed this issue in a distributed joint-action paradigm, where two team partners respond to different types of information within the same task. Previous work has shown that joint action in such a task enhances memory for items that are relevant to the partner’s task but not to the own task. By removing critical, non-social confounds, we wanted to pinpoint the social nature of this selective memory advantage. Specifically, we created joint task conditions in which participants were aware of the shared nature of the concurrent task but could not perceive sensory cues to the other’s responses. For a differentiated analysis of the social parameters, we also varied the distance between partners. We found that the joint action effect emerged even without sensory cues from the partner, and it declined with increasing distance between partners. These results support the notion that the joint-action effect on memory is in its core driven by the experience of social co-presence, and does not simply emerge as a by-product of partner-generated sensory cues.

Highlights

  • A distinct characteristic of the human species is the extraordinary level of cooperation between individuals, even between genetically unrelated conspecifics

  • The effect was replicated with the original procedure, where the two participants performed their parts of the task at the same computer

  • It occurred when the two partners were divided by a partition wall during joint task performance and wore soundproof headphones, preventing access to all visual and auditory cues from the partner

Read more

Summary

Introduction

A distinct characteristic of the human species is the extraordinary level of cooperation between individuals, even between genetically unrelated conspecifics. Evolutionary accounts explain this human “hypersociality” (Pinker, 2010) by a selection pressure toward joint and coordinated action in early human societies. This is because memory represents the critical mechanism for the continued availability of socially relevant information beyond the current situation, which affords preparatory adaptation to social interactions in the future. Little is known so far on how joint task performance affects memory formation

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.