Abstract

Several conditions in the peritoneal membrane of peritoneal dialysis (PD) patients promote the accumulation of advanced glycation end-products (AGEs), that is, the uremic state, exposure to high glucose concentrations, and exposure to glucose degradation products (GDPs). AGEs exert some of their biologic actions through binding with a cell surface receptor, termed RAGE. Interaction of AGEs with RAGE induces sustained cellular activation, including the production of the fibrogenic growth factor, transforming growth factor-beta (TGF-beta). TGF-beta is pivotal in the process of epithelial-to-mesenchymal transition, through which cells of epithelial origin acquire myofibroblastic characteristics. Myofibroblasts are involved in virtually all conditions of pathological fibrosis. Submesothelial fibrosis is an important feature in peritoneal biopsies of PD patients, especially of those with clinical problems. We therefore examined the role of RAGE in peritoneal fibrosis, in an animal model of uremia, of high glucose exposure, and of peritoneal dialysate exposure. All three models were characterized by accumulation of AGEs, upregulation of RAGE, and fibrosis. Antagonism of RAGE prevented the upregulation of TGF-beta and fibrosis in the peritoneal membrane. We further examined the underlying mechanism of peritoneal fibrosis in the uremic model. Prominent myofibroblast transdifferentiation of mesothelial cells was identified by co-localization of cytokeratin and alpha-smooth muscle actin in submesothelial and interstitial fibrotic tissue. Antagonism of RAGE prevented conversion of mesothelial cells to myofibroblasts in uremia. In conclusion, we hypothesize that accumulation of AGEs in the peritoneal membrane, as a consequence of the uremic environment, chronic exposure to high glucose, and exposure to GDPs, results in an increased expression of RAGE. The interaction of AGEs with RAGE induces peritoneal fibrosis by virtue of upregulation of TGF-beta and subsequent conversion of mesothelial cells into myofibroblasts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.