Abstract

Mesenchymal stem cells (MSCs) can differentiate into endothelial cells; however, the mechanisms underlying this process in the tumor microenvironment (TME) remain elusive. This study shows that tumor necrosis factor alpha (TNF-α), a key cytokine present in the TME, promotes the endothelial differentiation of MSCs by inducing vascular endothelial growth factor receptor 2 (VEGFR2) gene expression. EGR1 is a member of the zinc-finger transcription factor family induced by TNF-α. Our findings indicate that EGR1 directly binds to the VEGFR2 promoter and transactivates VEGFR2 expression. We also demonstrate that EGR1 forms a complex with c-JUN activated by c-JUN N-terminal kinase (JNK) to promote VEGFR2 transcription and endothelial differentiation in MSCs in response to TNF-α stimulation. The shRNA-mediated silencing of EGR1 or c-JUN abrogates TNF-α-induced VEGFR2 transcription and the endothelial differentiation of MSCs. To further evaluated the role of EGR1 in the endothelial differentiation of BM-MSCs, we used a syngenic tumor implantation model. 4T1 mouse mammary tumor cells were injected subcutaneously into BALB/c mice with primary mBM-MSCs isolated from wild-type (Egr1+/+) or Egr1-null (Egr1-/-) mice. CD31-positive cells were predominantly observed at the border of the tumor in the 4T1 plus wild-type MSC group, while staining less in the 4T1 alone or 4T1 plus Egr1-null MSC group. Collectively, these findings demonstrate that the JNK-EGR1 signaling axis plays a crucial role in the TNF-α-induced endothelial differentiation of MSCs in the TME, which could be a potential therapeutic target for solid tumors vasculatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call