Abstract

AbstractWe introduce the tracial Rokhlin property for a conditional expectation for an inclusion of unital C*-algebras P ⊂ A with index finite, and show that an action α from a finite group G on a simple unital C*- algebra A has the tracial Rokhlin property in the sense of N. C. Phillips if and only if the canonical conditional expectation E: A → AG has the tracial Rokhlin property. Let be a class of infinite dimensional stably finite separable unital C*-algebras that is closed under the following conditions:(1) If A ∊ and B ≅ A, then B ∊ .(2) If A ∊ and n ∊ ℕ, then Mn(A) ∊ .(3) If A ∊ and p ∊ A is a nonzero projection, then pAp ∊ .Suppose that any C*-algebra in is weakly semiprojective. We prove that if A is a local tracial -algebra in the sense of Fan and Fang and a conditional expectation E: A → P is of index-finite type with the tracial Rokhlin property, then P is a unital local tracial -algebra.The main result is that if A is simple, separable, unital nuclear, Jiang–Su absorbing and E: A → P has the tracial Rokhlin property, then P is Jiang–Su absorbing. As an application, when an action α from a finite group G on a simple unital C*-algebra A has the tracial Rokhlin property, then for any subgroup H of G the fixed point algebra AH and the crossed product algebra H is Jiang–Su absorbing. We also show that the strict comparison property for a Cuntz semigroup W(A) is hereditary to W(P) if A is simple, separable, exact, unital, and E: A → P has the tracial Rokhlin property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.