Abstract

In a fundamental paper R.E. Jamison showed, among other things, that any subset of the points of AG(n, q) that intersects all hyperplanes contains at least n(q − 1) + 1 points. Here we show that the method of proof used by Jamison can be applied to several other basic problems in finite geometries of a varied nature. These problems include the celebrated flock theorem and also the characterization of the elements of GF(q) as a set of squares in GF(q 2) with certain properties. This last result, due to A. Blokhuis, settled a well-known conjecture due to J.H. van Lint and the late J. MacWilliams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.