Abstract

Reviews the vibronic properties of point defects (i.e. impurities and radiation-induced defects) in diamond. Cases discussed are: defects where the totally symmetric electron-lattice interaction dominates; cases of dynamic Jahn-Teller distortions; vibronic interactions between nearly degenerate states and a statically deformed defect. Before discussing each of these topics the relevant theory is outlined at an introductory level with the emphasis on features relevant to understanding data. It is shown that a good understanding of the vibronic data is now available in diamond. Compared to defects in silicon, defects in diamond are less prone to static deformations, partly as a result of the high-energy transverse acoustic modes in diamond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.