Abstract
Abstract In the usual formulation of the Jahn-Teller effect a simplification is made in going from the adiabatic to the crude adiabatic approximation in which the electronic parts of the vibronic wavefunction are assumed independent of the nuclear coordinates. This then neglects momentum coupling in the vibronic coupling matrix. The momentum coupling has been termed the molecular Barnett effect when the active vibration transforms as the irreducible representation of a rotation in the molecular point group. Experimental evidence for the molecular Barnett effect has recently been found. In this paper the various point groups in which momentum and Barnett coupling can occur are investigated. A vibration capable of momentum coupling is contained in the asymmetric direct product of the degenerate electronic state and, as with the Jahn-Teller effect, is possible in the orbitally degenerate electronic states of molecules of all non-linear point groups. A static distortion along such a coordinate will lift the electronic degeneracy. Unlike the Jahn-Teller effect, however, in some point groups a minimum complexity of the molecule is required before such coupling can occur. In particular it will be absent in the degenerate electronic states of such simple molecules of the form X 3 (D 3h ); XY 3 (C 3v , D 3h ); XY 4 (T d ); and XY 6 (O h ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.