Abstract

In this paper, we consider the hamiltonian formulation of nonholonomic systems with symmetries and study several aspects of the geometry of their reduced almost Poisson brackets, including the integrability of their characteristic distributions. Our starting point is establishing global formulas for the nonholonomic Jacobiators, before and after reduction, which are used to clarify the relationship between reduced nonholonomic brackets and twisted Poisson structures. For certain types of symmetries (generalizing the Chaplygin case), we obtain genuine Poisson structures on the reduced spaces and analyze situations in which the reduced nonholonomic brackets arise by applying a gauge transformation to these Poisson structures. We illustrate our results with mechanical examples, and in particular show how to recover several well-known facts in the special case of Chaplygin symmetries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.