Abstract

Introduction: Medical documentation ought to be accessible with the preservation of its integrity as well as the protection of personal data. One of the manners of its protection against disclosure is anonymization. Contemporary methods ensure anonymity without the possibility of sensitive data access control. it seems that the future of sensitive data processing systems belongs to the personalized method. In the first part of the paper k-Anonymity, (X,y)- Anonymity, (α,k)- Anonymity, and (k,e)-Anonymity methods were discussed. these methods belong to well - known elementary methods which are the subject of a significant number of publications. As the source papers to this part, Samarati, Sweeney, wang, wong and zhang’s works were accredited. the selection of these publications is justified by their wider research review work led, for instance, by Fung, Wang, Fu and y. however, it should be noted that the methods of anonymization derive from the methods of statistical databases protection from the 70s of 20th century. Due to the interrelated content and literature references the first and the second part of this article constitute the integral whole.Aim of the study: The analysis of the methods of anonymization, the analysis of the methods of protection of anonymized data, the study of a new security type of privacy enabling device to control disclosing sensitive data by the entity which this data concerns.Material and methods: Analytical methods, algebraic methods.Results: Delivering material supporting the choice and analysis of the ways of anonymization of medical data, developing a new privacy protection solution enabling the control of sensitive data by entities which this data concerns.Conclusions: In the paper the analysis of solutions for data anonymization, to ensure privacy protection in medical data sets, was conducted. the methods of: k-Anonymity, (X,y)- Anonymity, (α,k)- Anonymity, (k,e)-Anonymity, (X,y)-Privacy, lKc-Privacy, l-Diversity, (X,y)-linkability, t-closeness, confidence Bounding and Personalized Privacy were described, explained and analyzed. The analysis of solutions of controlling sensitive data by their owner was also conducted. Apart from the existing methods of the anonymization, the analysis of methods of the protection of anonymized data was included. In particular, the methods of: δ-Presence, e-Differential Privacy, (d,γ)-Privacy, (α,β)-Distributing Privacy and protections against (c,t)-isolation were analyzed. Moreover, the author introduced a new solution of the controlled protection of privacy. the solution is based on marking a protected field and the multi-key encryption of sensitive value. The suggested way of marking the fields is in accordance with Xmlstandard. For the encryption, (n,p) different keys cipher was selected. to decipher the content the p keys of n were used. The proposed solution enables to apply brand new methods to control privacy of disclosing sensitive data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.