Abstract

Polarization microscopy was used to study the behavior around the isotropic-nematic interface of colloidal goethite dispersions in a magnetic field. It has been found before that the nematic phase is favored in an external field. In the case of goethite this was also observed; nematic droplets formed inside the isotropic phase and coalesced with the nematic phase. However, the behavior was found to be much richer because of the particle rotation around a certain critical field strength. The simultaneous occurrence of (parallel)nematic-(perpendicular)nematic phase separation under the influence of a magnetic field also plays a role here.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call