Abstract

The isothermal and cyclic oxidation behaviour of Ti–48Al–2Mn–2Nb (at%) were studied at high temperatures in air in comparison with the intermetallic alloys Ti–48Al–2Cr–2Nb and Ti–48Al–2Cr. Tests were performed in air between 800 and 900°C. At 800°C Ti–48Al–2Mn–2Nb showed an excellent oxidation resistance under isothermal and cyclic conditions, comparable with Ti–48Al–2Cr–2Nb, and superior to Ti–48Al–2Cr. At 900°C the isothermal oxidation rate of Ti–48Al–2Mn–2Nb was similar as found for Ti–48Al–2Cr–2Nb, but much lower as that of Ti–48Al–2Cr. Upon cooling the oxide scale formed on Ti–48Al–2Mn–2Nb was prone to spallation. During the cyclic oxidation at 900°C, a steady state condition is reached for both niobium bearing materials, with a net linear mass loss rate, due to spallation and (re-)growth of the oxide scale. The linear mass loss rate for the Ti–48Al–2Mn–2Nb was higher than that of Ti–48Al–2Cr–2Nb, indicative of a higher susceptibility for spallation. During the initial stage of oxidation of all tested materials a complex multi-phased and multi-layered scale was formed consisting of α-Al 2O 3, TiO 2 (rutile), TiN and Ti 2AlN. After longer exposure times the outer scale was dominated by TiO 2. In case of the niobium containing materials no loss of protectivity of the oxide scale was found during the growth of the outer TiO 2 layer (under isothermal conditions). Two-stage oxidation experiments with isotope tracers were performed to study the oxidation mechanism in more detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call