Abstract

We prove that Schubert varieties in potentially different Grassmannians are isomorphic as varieties if and only if their corresponding Young diagrams are identical up to a transposition. We also discuss a generalization of this result to Grassmannian Richardson varieties. In particular, we prove that Richardson varieties in potentially different Grassmannians are isomorphic as varieties if their corresponding skew diagrams are semi-isomorphic as posets, and we conjecture the converse. Here, two posets are said to be semi-isomorphic if there is a bijection between their sets of connected components such that the corresponding components are either isomorphic or opposite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.