Abstract
This paper deals with the isomorphism problem of directed path graphs and rooted directed path graphs. Both graph classes belong to the class of chordal graphs, and for both classes the relative complexity of the isomorphism problem is yet unknown. We prove that deciding isomorphism of directed path graphs is isomorphism complete, whereas for rooted directed path graphs we present a polynomial-time isomorphism algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.