Abstract
AbstractLet R be a Dedekind domain with field of quotients K. Let A be a finite-dimensional K-algebra. We consider isomorphism classes and genera in a category whose objects are indexed sets of full R-lattices in some ambient A-module and whose morphisms are the A-homomorphisms of the ambient A-modules which map each lattice into its corresponding lattice. We find conditions under which the stable A-isomorphism class of one particular lattice in an indexed set will determine the stable class of the indexed set within its genus. We apply our methods to show that if L/K is a tame Galois extension of algebraic number fields then the stable isomorphism class of the set of ambiguous ideals in L considered as Galois modules over K is determined by the class of the ring of integers in L together with the inertia subgroups and their standard representations over the respective residue fields of R.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.