Abstract
Summary form only given, as follows. L. Berman and H. Hartmanis (1977) conjectured that there is a polynomial-time computable isomorphism between any two languages m-complete (Karp complete) for NP. D. Joseph and P. Young (1985) discovered a structurally defined class of NP-complete sets and conjectured that certain of these sets (the K/sub f//sup k,/s) are not isomorphic to the standard NP-complete sets for some one-way functions f. These two conjectures cannot both be correct. The present authors introduce a new family of strong one-way functions, the scrambling functions. If f is a scrambling function, then K/sub f//sup k/ is not isomorphic to the standard NP-complete sets, as Joseph and Young conjectured, and the Berman-Hartmanis conjecture fails. In fact, if scrambling functions exist, then the isomorphism conjecture fails for essentially all natural complexity classes above NP, e.g. PSPACE, EXP, NEXP, and RE. As evidence for the existence of scrambling functions, much more powerful one-way functions-the annihilating functions-are shown to exist relative to a random oracle. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.