Abstract

The chemical structure of the major conjugate of bilirubin was unequivocally elucidated by structural analysis. The conjugated bilirubins were first separated from the lipid components of human duodenal aspirates or dog gall-bladder bile, and then resolved by t.l.c. into a series of tetrapyrroles. The major tetrapyrrole was then converted into its more stable dipyrrolic azo derivative for further analysis. The conjugated moiety of the azopigment was characterized after methanolysis with sodium methoxide. This reaction yields two types of product, those soluble in water and those soluble in organic solvents. The organic-soluble fraction was shown by t.l.c. and mass spectrometry to contain the methyl esters of the dipyrrolic azo derivatives of bilirubin. The water-soluble materials were analysed by enzymic procedures, t.l.c., n.m.r. spectrometry and combined g.l.c. and mass spectrometry. This analysis showed that the only water-soluble product resulting from the methanolysis was glucuronic acid. The structure was identical with that of pure standards, on both mass spectrometry and n.m.r. spectroscopy. No contaminating moieties were found. Quantitative measurement indicated that the glucuronic acid had been released in a 1:1 molar ratio with the resulting methyl esters of the dipyrrolic azo derivatives of bilirubin. This unequivocally establishes bilirubin diglucuronide as the major pigment present in bile. Past problems with identification of bilirubin diglucuronide were shown to originate from procedures which resulted in incomplete separation and isolation of the azopigments of the conjugated bilirubins, owing to contamination by biliary lipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.