Abstract

The dynamic organization of the olivocerebellar afferent input to Purkinje cells was examined in rat cerebellar cortex. The distribution of synchronous Purkinje cell complex spike activity was characterized, bilaterally, utilizing multiple electrode recordings in crus IIa folium under ketamine anaesthesia. The results confirmed the existence of rostrocaudal complex spike isochronicity bands with a mediolateral width of 500 microm. For a given band, no finer spatial submicrostructures could be discerned at a first-order approximation (two-dimensional projection). Closer analysis determined that isochronicity between bands is not continuous in space but demonstrates discrete discontinuities at the mediolateral boundaries. Principal component multivariate analysis revealed that the first principal component of the spatio-temporal variance is synchronicity along the rostrocaudal band with a decreased level of coupling in the mediolateral direction at the band boundary. Furthermore, this discrete banding isochronicity is organized by the distribution of feedback inhibition from the cerebellar nuclei on to the inferior olive nucleus. The usual multiple band structure can be dynamically altered to a single wide-band dynamic architecture, or to other patterns of activity, as may be required by movement coordination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.