Abstract
Thermal simulation technology was employed to investigate phase transformation in heat-affected zones (HAZ) of high Cr ferritic heat-resistant steel. The simulated continuous cooling transformation diagram was established based on the experimental results obtained from different cooling rates in the range of 0.02–60 °C/s. A theoretical model considering the site saturation nucleation at grain boundaries has been applied to calculate the austenite fraction as a function of cooling rate. It is found that both the austenite fraction and grain size decrease with the increase of cooling rates. The calculated results are mostly consistent with the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.