Abstract
The renal inflammatory response and kidney regeneration in ischemia-reperfusion injury (IRI) are associated with Toll-like receptor 4 (TLR4). Here we study the role of TLR4 during IRI in the renal cortex and medulla separately, using wild-type (TLR4-WT) and Knockout (TLR4-KO) TLR4 mice. We used 30 minutes of bilateral renal ischemia, followed by 48 hours of reperfusion in C57BL/6 mice. We measured the expression of elements associated with kidney injury, inflammation, macrophage polarization, mesenchymal transition, and proteostasis in the renal cortex and medulla by qRT-PCR and Western blot. In addition, we studied kidney morphology by H/E and PAS. Renal ischemia (30min) and reperfusion (48hrs) induced the mRNA and protein of TLR4 in the renal cortex. In addition, Serum Creatinine (SCr), blood urea nitrogen (BUN), Neutrophil gelatinase-associated lipocalin (NGAL), and acute tubular necrosis (ATN) were increased in TLR4-WT by IRI. Interestingly, the SCr and BUN had normal levels in TLR-KO during IRI. However, ATN and high levels of NGAL were present in the kidneys of TLR4-KO mice. The pro-inflammatory (IL-6 and TNF-α) and anti-inflammatory (Foxp3 and IL-10) markers increased by IRI only in the cortex of TLR4-WT but not in TLR4-KO mice. Furthermore, the M1 (CD38 and Frp2) and M2 (Arg-I, Erg-2, and c-Myc) macrophage markers increased by IRI only in the cortex of TLR4-WT. The TLR4-KO blunted the IRI-upregulation of M1 but not the M2 macrophage polarization. Vimentin increased in the renal cortex and medulla of TLR4-WT animals but not in the cortex of TLR4-KO mice. In addition, iNOS and clusterin were increased by IRI only in the cortex of TLR4-WT, and the absence of TLR4 inhibited only clusterin upregulation. Finally, Hsp27 and Hsp70 protein levels increased by IRI in the cortex and medulla of TLR4-WT and TRL4-KO lost the IRI-upregulation of Hsp70. In summary, TLR4 participates in renal ischemia and reperfusion through pro-inflammatory and anti-inflammatory responses inducing impaired kidney function (SCr and BUN). However, the IRI-upregulation of M2 macrophage markers (cortex), iNOS (cortex), IL-6 (medulla), vimentin (medulla), and Hsp27 (cortex and medulla) were independent of TLR4. The TLR4 inactivation during IRI prevented the loss of renal function due to the inactivation of inflammation response, avoiding M1 and preserving the M2 macrophage polarization in the renal cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.