Abstract

Taurine/α-ketoglutarate (αKG) dioxygenase (TauD) is an E. coli nonheme Fe2+- and αKG-dependent metalloenzyme that catalyzes the hydroxylation of taurine, leading to the production of sulfite. The metal-dependent active site in TauD is formed by two histidine and one aspartate that coordinating to one face of an octahedral coordination geometry, known as the 2-His-1-carboxylate facial triad. This motif is found in many nonheme Fe2+ proteins, but there is limited information on the thermodynamic parameters that govern metal-ion binding to this site. Here, we report data from calorimetry and related biophysical techniques to generate complete thermodynamic profiles of Mn2+ and Co2+ binding to TauD, and these values are compared to the Fe2+ data reported earlier Henderson et al. (Inorg Chem 54: 2278-2283, 2015). The buffer-independent binding constants (K) were measured to be 1.6 × 106, 2.4 × 107, and 1.7 × 109, for Mn2+, Fe2+, and Co2+, respectively. The corresponding ΔG° values were calculated to be -8.4, -10.1, and -12.5kcal/mol, respectively. The metal-binding enthalpy changes (ΔH) for these binding events are -11.1 (± 0.1), -12.2 (± 0.1), and -16.0 (± 0.6) kcal/mol, respectively. These data are fully consistent with the Irving-Williams series, which show an increasing affinity for transition metal ions across the periodic table. It appears that the periodic increase in affinity, however, is a result of a complicated summation of enthalpy terms (including favorable metal-ion coordination processes and unfavorable ionization events) and related entropy terms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call