Abstract

Conservative modelling for pin layout shows that the relatively low thermal conductivity of Inert-Matrix Fuel (IMF) causes higher temperatures and therefore higher fission gas release than in uranium plutonium mixed oxide (MOX). According to neutronic calculations, performance differences will also arise from different evolutions of the respective radial power and burnup distributions. Modelling of these effects as well as a ∼10% greater production of Xe in the thermal spectrum of the Halden reactor is well within the capabilities of appropriate codes. Some of the data and models used for the pre-calculations are preliminary and will be revised after the first experimental data have become available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.