Abstract

During skeletal development, osteoblasts produce large amounts of extracellular matrix proteins and must therefore increase their secretory machinery to handle the deposition. The accumulation of unfolded protein in the endoplasmic reticulum induces an adoptive mechanism called the unfolded protein response (UPR). We show that one of the most crucial UPR mediators, inositol-requiring protein 1α (IRE1α), and its target transcription factor X-box binding protein 1 (XBP1), are essential for bone morphogenic protein 2-induced osteoblast differentiation. Furthermore, we identify Osterix (Osx, a transcription factor that is indispensible for bone formation) as a target gene of XBP1. The promoter region of the Osx gene encodes two potential binding motifs for XBP1, and we show that XBP1 binds to these regions. Thus, the IRE1α-XBP1 pathway is involved in osteoblast differentiation through promoting Osx transcription.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.