Abstract
Abstract. The Earth's ionosphere is subject to disturbance from above (via solar variability and space-weather effects) and from below (such as tectonic activity, thunderstorms and sudden stratospheric warmings). Identifying the relative contribution of these effects remains challenging, despite recent advances in spacecraft monitoring near-Earth space. Man-made explosions provide a quantifiable proxy for natural terrestrial sources, enabling their impact on ionospheric variability to be studied. In this paper, the contribution of ground-based disturbances to ionospheric variability is investigated by considering the response of the ionospheric F2 layer over Slough, UK, to 152 major bombing raids over Europe during World War II, using a superposed epoch analysis. The median response of the F2 layer is a significant decrease in peak electron concentration (∼0.3 MHz decrease in foF2). This response is consistent with wave energy heating the thermosphere, enhancing the (temperature-dependent) loss rate of O+ ions. The analysis was repeated for a range of thresholds in both time of bombing before the (noon) ionospheric measurement and tonnage of bombs dropped per raid. It was found that significant (∼2–3σ) deviations from the mean occurred for events occurring between approximately 3 and 7 h ahead of the noon ionospheric measurements and for raids using a minimum of between 100 and 800 t of high explosives. The most significant ionospheric response (2.99σ) occurred for 20 raids up to 5 h before the ionospheric measurement, each with a minimum of 300 t of explosives. To ensure that the observed ionospheric response cannot be attributable to space-weather sources, the analysis was restricted to those events for which the geomagnetic Ap index was less than 48 (Kp<5). Digitisation of the early ionospheric data would enable the investigation into the response of additional ionospheric parameters (sporadic E, E and F1 layer heights and peak concentrations). One metric ton of TNT has an explosive energy of 4.184×109 J, which is of the same order of energy as a cloud to ground lightning stroke. Since the occurrence of lightning has distinctive diurnal and seasonal cycles, it is feasible that a similar mechanism could contribute to the observed seasonal anomaly in ionospheric F-region electron concentrations. Further investigation, using less extreme examples, is required to determine the minimum explosive energy required to generate a detectable ionospheric response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.