Abstract

A new synchrotron-based photoionization spectrum of 6,6-dimethylfulvene shows significant vibrational fine structure (VFS), in contrast to previous studies; this was successfully analysed by Franck-Condon (FC) methods. The sequence of ionic states in the range 7 to 19 eV has been determined by both symmetry adapted cluster configuration interaction and density functional methods, especially using the long-range corrected version of the Becke three-parameter hybrid functional (B3LYP) using the Coulomb-attenuating method (CAM-B3LYP). Both lead to reliable theoretical values for both the calculated vertical and adiabatic ionization energies. The FC profile for the lowest ionization energy (IE1, X2A2) shows extensive VFS which is analysed successfully. The second IE (A2B1) shows truncated structure owing to overlap with IE1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.