Abstract

Far Ultraviolet Spectroscopic Explorer spectra of the white dwarf stars G191-B2B, GD 394, WD 2211-495, and WD 2331-475 cover the absorption features out of the ground electronic states of N I, N II, N III, O I, and Ar I in the far-ultraviolet, providing new insights on the origin of the partial ionization of the local interstellar medium (LISM) and, for the case of G191-B2B, the interstellar cloud that immediately surrounds the solar system. Toward these targets the interstellar abundances of Ar I, and sometimes N I, are significantly below their cosmic abundances relative to H I. In the diffuse interstellar medium, these elements are not likely to be depleted onto dust grains. Generally, we expect that Ar should be more strongly ionized than H (and also O and N, whose ionizations are coupled to that of H via charge-exchange reactions) because the cross section for the photoionization of Ar I is very high. Our finding that Ar I/H I is low may help to explain the surprisingly high ionization of He in the LISM found by other investigators. Our result favors the interpretation that the ionization of the local medium is maintained by a strong extreme-ultraviolet flux from nearby stars and hot gases, rather than an incomplete recovery from a past, more highly ionized condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.