Abstract

Contact lens materials include polymers that are ionized in the ocular pH condition and are susceptible to protein deposition due to their surface characteristics. Herein, we investigated the effect of the electrostatic state of the contact lens material and protein on protein deposition level using hen egg white lysozyme (HEWL) and bovine serum albumin (BSA) as model proteins and etafilcon A and hilafilcon B as model contact lens materials. Only HEWL deposition on etafilcon A showed a statistically significant pH-dependency (p < 0.05); protein deposition increased with pH. HEWL showed a positive zeta potential at acidic pH, while BSA showed a negative zeta potential at basic pH. Only etafilcon A showed a statistically significant pH-dependent point of zero charge (PZC) (p < 0.05), implying that its surface charge became more negative under basic conditions. This pH-dependency of etafilcon A is attributed to the pH-responsive degree of ionization of its constituent methacrylic acid (MAA). The presence of MAA and its degree of ionization could accelerate protein deposition; more HEWL deposited as pH increased despite the weak positive surface charge of HEWL. The highly negatively charged etafilcon A surface attracted HEWL, even overwhelming weak positive charge of HEWL, increasing the deposition with pH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.