Abstract

Interfaces between alkali metal solid state electrolytes and aqueous solutions are often unstable. In particular, the use of β/β″ alumina superionic conductors is generally limited to conditions absent of liquid water due to their well-known sensitivity to water vapor. However, the degradation mechanism upon exposure to aqueous solutions is not well understood. Using impedance spectroscopy, infrared spectroscopy, and chemical analysis, we studied the mechanism of ionic impedance rise for K+-ion-conducting, polycrystalline K-β″ alumina membranes in room temperature aqueous solutions. By using a non-blocking Fe2+/Fe3+ couple in a symmetric aqueous impedance cell with different concentrations of LiOH, NaOH, KOH, CsOH, and KBr, we find that the rate of resistance rise of the membrane is highly dependent on the pH and K+ concentration in the solution. We find the rate decreases from ~50–200 Ω cm2 h−1 in neutral pH solutions to ~0.1–1 Ω cm2 h−1 in alkaline solutions or solutions with high K+ concentrations. Characterization results are consistent with ion exchange of K+ for hydrated protons as the mechanism of resistance rise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.