Abstract

Activation of N-methyl- d-aspartate (NMDA) receptors can induce tetrodotoxin (TTX)-resistant membrane potential oscillations as well as fictive locomotion in the in vitro preparation of the lamprey spinal cord. The ionic basis of these oscillations were investigated in the presence of N-methyl- d,l-aspartate and TTX. Addition of blocking agents (2-amino-5-phosphonovalerate and tetraethylammonium (TEA)) and selective removal or substitution of certain ions (Mg 2+, Ca 2+, Na +, Ba 2+) were used in the analysis of the oscillations. The depolarizing phase of the oscillation requires Na + ions but not Ca 2+ ions. The depolarization becomes larger if TEA is administered in the bath, which presumably is due to a blockade of potassium (K +) channels activated during the depolarizing phase. The repolarization appears to depend on a Ca 2+ entry, which presumably acts indirectly by an activation of Ca 2+-dependent K + channels. Together with the NMDA-induced voltage dependence, this will bring the membrane potential back down to a hyperpolarized level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call