Abstract

This review presents actual knowledge about energetic, ionic, osmotic and gaseous control of fish sperm motility and its duration. Right after they are activated, fish spermatozoa of most species swim for a short period of time, in the range of one to several minutes. What determines the activation process? Is it due to the new ionic, gaseous and/or osmotic environment? Why is the duration of motility so short? Is it resulting from a fast exhaustion of energy stores (ATP, ADP, AMP, PCr) combined with the above-mentioned ionic/osmotic stress leading to morphological alterations? The motility criteria (flagellar beat frequency, head displacement velocity, flagellar waves morphology, etc.) used to characterize fish sperm movement and sperm flagella will be described. Most parameters change very rapidly during the brief motility period of fish sperm. Then will be considered the main environmental factors, ionic and/or osmotic signals, responsible of the activation of fish sperm motility. Then the metabolic compounds involved in cell energetics will be considered as their concentrations also rapidly change during the motility phase. An additional feature will then be discussed concerning the mechanisms by which fish sperm cell can be revived for a second motility round at the end of the first motility period. A model is proposed to explain how external osmolarity can control internal ionic composition, the latter being the key factor controlling flagellar activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call