Abstract

AbstractThe ion‐like silylium compounds tBu3Si–F–Al[OC(CF3)3]3 and Me3Si–F–Al[OC(CF3)3]3 were prepared by degradation of the halonium salts [R3Si–X–SiR3][Al{OC(CF3)3}4] {1a(X): R = tBu, X = Br, I; 1b(X): R = Me, X = Br, I}. The bromonium and iodonium salts 1a(Br), 1a(I), 1b(Br), and 1b(I) were quantitatively obtained from R3SiX (R = Me, tBu) and [Ag][Al{OC(CF3)3}4] in dichloromethane at –50 °C. However, the related fluoronium and chloronium salts, [R3Si–X–SiR3][Al{OC(CF3)3}4] {1a(X): R = tBu, X = F, Cl; 1b(X): R = Me, X = F, Cl}, could not be generated under these conditions. Generally, at low temperatures (< –50 °C) the halonium salts 1a(Br), 1a(I), 1b(Br), and 1b(I) are stable compounds. However, at higher temperatures 1a(Br), 1a(I), 1b(Br), and 1b(I) undergo R3SiX (R = Me, tBu; X = Br, I) elimination to form the highly reactive silyl cations [R3Si]+ (R = Me, tBu). Two different decomposition pathways were observed in the thermolysis of halonium compounds 1a(Br), 1a(I), 1b(Br), and 1b(I): (1) the silylium cations [R3Si]+ reacted with dichloromethane, forming 1a(Cl) as well as 1b(Cl); (2) the silylium cations [R3Si]+ degraded the counteranion to give tBu3Si–F–Al[OC(CF3)3]3 and Me3Si–F–Al[OC(CF3)3]3 along with epoxide C4F8O. Both ion‐like silylium compounds could be isolated, and single crystals of tBu3Si–F–Al[OC(CF3)3]3 (orthorhombic, Pnma) as well as Me3Si–F–Al[OC(CF3)3]3 (orthorhombic, P212121) were grown from dichloromethane at room temp. Supersilylium [tBu3Si]+ has higher Lewis acidity than [Me3Si]+, as demonstrated by the reaction of 1a(I) with Me3SiF. Thereby the fluoronium ion 1b(F), along with tBu3SiF and tBu3SiI, was formed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call