Abstract

Here, we investigated the intracellular mechanisms that underlie the relative invulnerability of adult versus developing dorsal root ganglion (DRG) sensory neurons. In culture, adult neurons were resistant to stimuli that caused apoptosis of their neonatal counterparts. In both adult and neonatal neurons, death stimuli induced the apoptotic c-Jun N-terminal protein kinase (JNK) pathway, but JNK activation only caused death of neonatal neurons, indicating that adult neurons have a downstream block to apoptosis. Expression of the dominant-inhibitory p53 family member, DeltaNp73, rescued JNK-induced apoptosis of neonatal neurons, suggesting that it might participate in the downstream apoptotic block in adult neurons. To test this possibility, we examined adult DRG neurons cultured from p73+/- mice. Adult p73+/- DRG neurons were more vulnerable to apoptotic stimuli than their p73+/+ counterparts, and invulnerability could be restored to the p73+/- neurons by increased expression of DeltaNp73. Moreover, although DRG neuron development was normal in p73+/- animals in vivo, axotomy caused death of adult p73+/- but not p73+/+ DRG neurons. Thus, one way adult neurons become invulnerable is to enhance endogenous survival pathways, and one critical component of these survival pathways is p73.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.