Abstract
An increase in the intracellular Ca2+ level in neurons is one of the main steps in the memory formation cascade. The increase results from extracellular Ca2+ influx by activation of ionotropic glutamate receptors and release from intracellular stores by the stimulation of IP3 receptors (IP3Rs) via group I metabotropic glutamate receptors (mGluR1/5). Recent data indicate an additional mechanism resulting in Ca2+ influx into neurons, triggered by intracellular signals that are directly connected to the activation of group I mGluRs. This influx occurs through transient receptor potential (TRP) channels, which are permeable to Na+, K+ and, mainly, Ca2+. These channels are activated by increases in intracellular Ca2+, diacylglycerol (DAC) and inositol 1,4,5-triphosphate (IP3) level resulting from a group I mGluR activation. The aim of the present study was to investigate the participation of TRP channels, especially from TRPC and TRPV groups, in memory consolidation and reconsolidation and memory retrieval processes in a passive avoidance task in one-day old chicks. TRP channels were blocked by the injection of the unspecific channel modulators SKF 96365 (2.5µl 30µM/hemisphere) and 2-APB (2.5µl 10µM/hemisphere) directly into the intermediate medial mesopallium (IMM) region of the chick brain immediately after initial training or after a reminder. The inhibition of specific TRP channels (TRPV1, TRPV3 or TRPC3) was achieved by the application of selective antibodies. Our results demonstrate that the inhibition of TRP channels by the application of both modulators disrupted memory consolidation, resulting in permanent task amnesia. The inhibition of the TRPV1, TRPC3 and TRPV3 channels by specific antibodies resulted in similar amnesia. Moreover, the inhibition of TRP channels by SKF 96365 and 2-APB at different time points after initial training or after the reminder also resulted in amnesia, indicating the role of TRP channels in memory retrieval. The inhibition of calcium influx through these channels resulted in permanent memory disruption, which suggests that the calcium signal generated by TRP channels is crucial for memory formation and retrieval processes. For the first time, the important role of TRPV3 channels in memory formation was demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.