Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two closely related peptides, which can activate protein kinase A (PKA). At least three receptors for PACAP and VIP have been identified. The PACAP-specific receptor, PAC1 receptor, exhibits a higher affinity for PACAP than VIP, whereas VIP receptors, VPAC1-R and VPAC2-R, have similar affinities for PACAP and VIP. Both PACAP/VIP and their cognate receptors are highly expressed in the brain, including the hippocampus. Recently, their roles in the regulation of synaptic transmission have begun to emerge. PACAP/VIP can signal through different pathways to regulate N-methyl-D: -aspartate (NMDA) receptors in CA1 pyramidal cells. The activation of VPAC1/2-Rs increases evoked NMDA currents via the cyclic AMP/PKA pathway. However, the activation of PAC1-R stimulates a PLC/PKC/Pyk2/Src signaling pathway to enhance NMDA receptor function in hippocampal neurons. Furthermore, different concentrations of PACAP induce different effects on the both α-amino-3-hydroxy-5-isoxazole-propionic acid-evoked current and basal synaptic transmission by activating different receptors. Their roles in learning and memory are also demonstrated using transgenic mice and pharmacological methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call