Abstract

Clinical studies have shown that fenretinide (4-HPR) is an attractive chemopreventive agent for cancer treatment. However, to date, few studies have demonstrated the mechanism of the preventive effect of 4-HPR. In our current study, we revealed that 4-HPR could significantly suppress IL-4/IL-13 induced M2-like polarization of macrophages, which was demonstrated by the reduced expression of M2 surface markers, the down-regulation of M2 marker genes, and the inhibition of M2-like macrophages promoted angiogenesis. Mechanistically, our study suggested that the inhibition of the phosphorylation of STAT6, rather than the generation of oxidative stress, is involved in the 4-HPR-driven inhibition of M2 polarization. More intriguingly, by utilizing adenomatous polyposis coli (APCmin/+) transgenic mice, we demonstrated that the tumorigenesis was dramatically decreased by 4-HPR treatment accompanied with fewer M2-like macrophages in the tumor tissues, thereby profoundly blocking tumor angiogenesis. These findings, for the first time, reveal the involvement of M2 polarization inhibition in 4-HPR-mediated chemoprevention, which provides a new point of insight and indicates the potential mechanism underlying the chemopreventive effect of 4-HPR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.