Abstract

We have addressed the question why in the presence of a Ca2+ ionophore human polymorphonuclear leukocytes generate leukotrienes in high yields, but in only low amounts after stimulation by receptor agonists like fMLF (fM, formylmethionine), leukotriene B4 or platelet-activating factor (PAF), although a significant release of intracellular calcium can be measured. Using ionomycin we can show that from the two enzymes involved, phospholipase A2 and 5-lipoxygenase, the first requires a threshold level of about 350-400 nM calcium whereas 5-lipoxygenase shows a linear dependence on calcium and saturates at this concentration. Our data indicate that the Ca2+ requirement of phospholipase A2 can only be met by an additional influx of extracellular calcium, whereas 5-lipoxygenase will operate already at levels provided by intracellular stores. Consequently, the complexing of extracellular calcium by EGTA stops phospholipase A2 activity immediately, whereas added arachidonate can be still adequately metabolized by intracellular Ca2+ release triggered by fMLF or PAF. Interestingly, PAF shows a stronger extracellular component in its Ca2+ transient than fMLF, and also generates more 5-lipoxygenase metabolites. However, a clear correlation between the amount of 5-lipoxygenase metabolites and the extracellular Ca2+ signal was lacking, since maximal activity was achieved before the bulk of the extracellular calcium was monitored. Ca2+ influx after PAF stimulation could be blocked after 2 min by EGTA, but a further increase in the formation of 5-lipoxygenase metabolites was observed. In contrast ionomycin-elicited 5-lipoxygenase activity could be stopped at any time shortly after EGTA addition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call