Abstract

Schizophrenia is one of the most devastating heterogeneous psychiatric disorders. The dopamine hypothesis is the longest standing pathoetiologic theory of schizophrenia based on neurochemical evidences of elevated brain striatal dopamine synthesis capacity and increased dopamine release in response to stress. Dopamine and cyclic AMP-regulated phosphoprotein of relative molecular mass 32,000 (DARPP-32) is a cytosolic protein highly enriched in the medium spiny neurons of the neostriatum, considered as the most important integrator between the cortical input and the basal ganglia, and associated with motor control. Accumulating evidences has indicated the involvement of DARPP-32 in the development of schizophrenia; i. DARPP-32 phosphorylation is regulated by several neurotransmitters, including dopamine and glutamate, neurotransmitters implicated in schizophrenia pathogenesis; ii. decrease of both total and phosphorylated DARPP-32 in the prefrontal cortex are observed in schizophrenic animal models; iii. postmortem brain studies indicated decreased expression of DARPP-32 protein in the superior temporal gyrus and dorsolateral prefrontal cortex in patients with schizophrenia; iv. DARPP-32 phosphorylation is increased upon therapy with antipsychotic drugs, such as haloperidol and risperidone which improve behavioral performance in experimental animal models and patients; v. Genetic analysis of the gene coding for DARPP-32 propose an association with schizophrenia. Cumulatively, these findings implicate DARPP-32 protein in schizophrenia and propose it as a potential therapeutic target. Here, we summarize the possible roles of DARPP-32 during the development of schizophrenia and make some recommendations for future research. We propose that DARPP-32 and its interacting proteins may serve as potential therapeutic targets in the treatment of schizophrenia.

Highlights

  • Schizophrenia is a severe mental disorder with a worldwide lifetime risk of approximately 1% of the population

  • DARPP-32 phosphorylation is regulated by several neurotransmitters, including dopamine and glutamate, neurotransmitters implicated in schizophrenia pathogenesis; ii. decrease of both total and phosphorylated DARPP-32 in the prefrontal cortex are observed in schizophrenic animal models; iii. postmortem brain studies indicated decreased expression of DARPP-32 protein in the superior temporal gyrus and dorsolateral prefrontal cortex in patients with schizophrenia; iv

  • Following activation of dopamine 1-like receptor (D1R), DARPP-32 is accumulated in the nucleus of dopaminergic neurons and this facilitates the phosphorylation of histone H3 at Ser10, a site dephosphorylated by PP1, suggesting that DARPP-32 is involved in the regulation of alternative splicing or gene expression [54]

Read more

Summary

Introduction

Schizophrenia is a severe mental disorder with a worldwide lifetime risk of approximately 1% of the population. Postmortem brain studies indicated decreased expression of DARPP-32 protein in the superior temporal gyrus and dorsolateral prefrontal cortex in patients with schizophrenia; iv. The protein level of truncated DARPP-32 is significantly increased in the dorsolateral prefrontal cortex and caudate of patients with schizophrenia [36, 37].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call