Abstract

Many brown algae, including the kelp Laminaria digitata (Huds.) Lamour., exhibit enhanced photosynthesis when they are given a small amount of blue‐light in addition to a background of saturating red light. This blue light effect is correlated with an increased uptake of carbon. In the present study, we tested the hypothesis that blue light acts by increasing the activity of a plasma membrane H+‐ATPase, thereby promoting an active carbon uptake across the plasma membrane. Photosynthetic carbon uptake was studied in pH‐drift experiments under illumination with red and blue light and using different inhibitors. Vanadate, an inhibitor of plasma membrane H+‐ATPases, had a minor inhibitory effect on carbon uptake rates under saturating red light conditions, but inhibited the blue‐light enhancement by approximately 60%. An inhibitor of external carbonic anhydrase, acetazolamide, decreased the carbon uptake in both red light and in red plus blue light by 48% and 68%, respectively. These results suggest that photosynthetic carbon uptake depends on an external carbonic anhydrase under both red and red plus blue light conditions, and that blue light induces an increased activity of a P‐type H+‐ATPase in the plasma membrane. The proton buffer Tris, which has a buffering capacity similar to vanadate in seawater, had no inhibitory effect on carbon uptake rates neither in red light nor in red plus blue light, showing that the inhibitory effect of vanadate is not caused by its effect as a buffer. The blue‐light enhancement was also abolished by a protein kinase inhibitor (H‐7), suggesting that the transduction of the blue‐light signal involves a protein kinase, which activates the plasma membrane H+‐ATPase by phosphorylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.