Abstract
It is known that in fish the serotonergic system is part of the neural network that controls feeding and that a pharmacologically induced increase in the brain 5-HT inhibits food intake. However, nothing is known about the 5-HT receptors involved in this inhibitory effect. In this study, we investigated the effects of several 5-HT1 and 5-HT2 receptor agonists on food intake in rainbow trout. In the first experiment, fish were injected i.p. or i.c.v. with two 5-HT1B receptor agonists, anpirtoline (2mg/kg, i.p.) and CP93129 (100 and 200μg/kg, i.c.v.). Neither of these treatments significantly altered food intake. In a second set of experiments, different groups of fish were injected i.p. (1mg/kg) or i.c.v. (30μg/kg) with the 5-HT1A receptor agonist 8-OH-DPAT. In both cases, administration of the 5-HT1A receptor agonist inhibited food intake. In a third set of experiments, we explored the effects of different 5-HT2 receptor agonists. Different groups of fish were injected i.p. or i.c.v. with the mixed 5-HT2B/2C agonist m-CPP (5mg/kg, i.p.), 5-HT2C agonist MK212 (60μg/kg, i.c.v.) and 5-HT2B agonist BW723C86 (50 and 100μg/kg, i.c.v.). Administration of the 5-HT2B/2C and 5HT2C receptor agonists significantly inhibited food intake. Administration of the lowest dose of the 5-HT2B receptor agonist did not have any significant effect, while administration of the highest dose induced a significant increase in food intake. Activation of the 5-HT1A-like (food intake inhibition) and 5-HT1B-like (no effect on food intake) receptors in the rainbow trout induced different effects on food intake from those observed in mammals. We conclude that in rainbow trout the anorexigenic actions of 5-HT are probably mediated by activation of 5-HT1A and 5-H2C-like receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.