Abstract

The coding region of the involucrin gene of Tupaia glis has been cloned and sequenced. It resembles the involucrin coding region of other non-anthropoid mammals in possessing a segment of related, short tandem repeats at a defined location, but in Tupaia, there has been recent serial duplication of a repeat into which a cysteine codon had earlier been introduced. As a result of the duplication, there is a total of as many as six cysteine codons in the segment of repeats, a number larger than for any other species yet examined. In Rattus there has been a comparable but independent addition of cysteine codons, and both Tupaia and Rattus have eliminated an otherwise conserved cysteine codon 75 located close to but outside the segment of repeats. In Tupaia, this elimination probably occurred by gene conversion. Also independently, the gene of Canis has added cysteine codons to the segment of repeats but has not yet lost cysteine 75. It is proposed that the gain and the loss of cysteine codons are parts of a multi-stage program of cysteine relocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.