Abstract
Abstract The tribological properties of composite materials with microdispersed proportions, based on the epoxy-polyether matrix, were investigated. The specimens were tested during dry friction and in the conditions of a corrosive environment. It was determined that at dry friction, the coefficient of friction is f = 0.33–0.35, and the contact temperature of the experimental specimen in the area of mechanical interaction of surfaces is T = 366–369 К. It was proved that composites, which were tested in the conditions of a corrosive environment, differ with improved antifriction properties and increased durability. In this case, the coefficient of friction is f = 0.08–0.09, and the contact temperature in the friction area is T = 295–298 К. It was stated that the wetting of the surface of the friction and heat removal from its area significantly affects the properties of the polymer during friction. In particular, the work surface of the source material and polymer, after testing in different conditions, was analyzed with the methods of optical and electron microscopy. The presence of lines of friction and microcracking of specimens at elevated temperatures was revealed. The elemental composition of the surfaces of materials in different areas was investigated with the help of X-ray microanalysis. The presence of selective transfer effect during the testing was ascertained as a result of analysis of the elemental composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.