Abstract

ObjectiveTo investigate the stability of Acorus tatarinowii and Atractylodes lancea essential oils (ATaAL-EO) under a hot environment at 60 °C, and to analyze the differences in component, quantity, and quality changes, as well as variations in the main components, under different treatment methods of crude oil, β-cyclodextrin inclusion of ATaAL-EO, and Pickering emulsion, to improve the stability and quality of ATaAL-EO. MethodsThe stability of the ATaAL-EO group, the β-cyclodextrin inclusion ATaAL-EO group, and the Pickering emulsion group were investigated under a 60 °C heat environment. Volatile oil retention rate and peroxide value were collected and measured. The volatile oil components of each group were determined by GC-MS, and t-tests were used to screen for differential components. PCA plots for each group were constructed using the OmicShare online platform. Line plots were generated using the Rmisc and reshape2 packages. Upset Venn diagrams under different hot environments were created using the OmicShare online platform to identify quantitative and qualitative changing components and heat map stack plots for newly generated compounds and connected line plots for disappearing compounds were produced for each group. Boxplots for the main component compounds under different hot environments were generated using the reshape2 and ggplot2 packages. ResultsIn a hot environment of 60 °C, the β-cyclodextrin inclusion ATaAL-EO and Pickering emulsion group with 1, 3, and 8 h of placement showed higher retention and lower oxidation degree compared to the stability of the ATaAL-EO group. GC-MS analysis results showed that the stability of volatile components in the Pickering emulsion group and β-cyclodextrin inclusion ATaAL-EO group was significantly improved compared to the crude oil group. Conclusionβ-cyclodextrin inclusion complexes with ATaAL-EO, as well as Pickering emulsions, can significantly enhance the stability and quality of ATaAL-EO. Pickering emulsions have more advantages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.