Abstract
An online-coupled TG–FTIR evolved gas analysis (EGA) instruments have been used to identify and monitor the evolution of gaseous products during the thermal decomposition of phenylalanine and tyrosine in flowing N 2 atmosphere up to 800 °C. The results indicate that the thermolysis processes of these two compounds are similar. For both of them the main primary decomposition steps are two competing paths: the direct decarboxylation and the concerted rupturing of C–C bonds. And the primary decomposition reactions also include deamination and dehydration. The main secondary reaction is the crack of cyclic dipeptide which also presents two competing pathways. The main gaseous products are NH 3, H 2O, CO 2, CO, HNCO, HCN and some organic compounds. However, compared with tyrosine, the decomposition of phenylalanine is more complete and involves less secondary reaction. That is caused by their different thermal stability and decomposition temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.