Abstract

The electronic structure of [Co(ntb)(nic)]+ complex ion are optimized by using density functional theory (DFT) method with mix basis set. Where (ntb) represents tris(2-benzimidazolylmethyl)amine ligand and (nic) is the anion of nicotinic acids. Six different fields, vacuum, chloroform, butanonitrile, methanol, water and formamide solvents are used in these calculations. The calculated structural parameters indicate that (nic) ligand coordinates to cobalt(II) containing (ntb) ligand with one oxygen atom in butanonitrile, methanol, water and formamide solvents but coordinates with two oxygen atoms in vacuum. These results are supported with IR, UV and 1H NMR spectra. According to the calculated results, the geometry of [Co(ntb)(nic)]+ complex ion is distorted octahedral in vacuum while the geometry is distorted square pyramidal in the all other solvents. Distorted octahedral [Co(ntb)(nic)]+ complex ion have not been synthesized as experimentally and it is predicted with computational chemistry methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.