Abstract

The influence of modification by low-temperature atmospheric-pressure plasma and steam sterilization on the properties of track membranes based on polyethylene terephthalate is studied. It is found that the action of hot steam under pressure changes the topography of the surface of the membranes with the formation of artifacts in the form of large oval-shaped protrusions with a height of 300–400 nm and a density of up to 0.007 protrusions/μm2 on the surface, increases the surface roughness by 40% and the wetting angle by 9°–18° for the initial membranes and by 36.8°–39.6° for the membranes modified in plasma, and decreases their surface energy to the initial value of 33 mJ/m2. Despite the morphological and structural changes in the surface, sterilization by hot steam under pressure does not lead to any noticeable change in the surface charge and ζ potential of the track membranes. Hot steam under pressure does not promote further crystallization of the membrane, keeping the polymer with a crystalline phase of 40–42%. Thus, to preserve the properties acquired by the membrane after the plasma treatment, it is necessary to search for a different sterilization method (gamma radiation, ethylene oxide sterilization).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call