Abstract

The original Rough Set model is concerned primarily with algebraic properties of approximately defined sets. The Variable Precision Rough Set (VPRS) model extends the basic rough set theory to incorporate probabilistic information. The article presents a non-parametric modification of the VPRS model called the Bayesian Rough Set (BRS) model, where the set approximations are defined by using the prior probability as a reference. Mathematical properties of BRS are investigated. It is shown that the quality of BRS models can be evaluated using probabilistic gain function, which is suitable for identification and elimination of redundant attributes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.