Abstract

Intelligent manufacturing is developing rapidly nowadays, promoting the efficiency of manufacturing. In comparison, the design process has become a bottleneck in the product life cycle. In order to address this problem, this research develops an intelligent design method based on the automobile transmission system. Firstly, a mathematical model of the coupled vibration between the drive shaft and the main reducer was developed, and the vibration responses of the transmission system were simulated based on this mathematical model. Then, a test rig was developed to measure the vibration responses of the system; the measured results correlated well with the simulation results, indicating that the mathematical model can be used to investigate the coupled vibration between the drive shaft and the main reducer. Furthermore, the multiple parameters of the transmission system were optimized based on the mathematical model using the intelligent optimization algorithm. In particular, software was developed based on the intelligent optimization algorithm for the convenience of analysis, and the optimized results were acquired. The analysis results show that the vibration responses can be reduced when the optimized parameters are applied, indicating that the intelligent design method developed in this research is effective for the intelligent design of transmission system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.