Abstract

The adsorption and dissociation mechanism of H2O molecule on the Li2O (111) surface have been systematically studied by using the density functional theory calculations. The parallel and vertical configurations of H2O at six different symmetry adsorption sites on the Li2O (111) surface are considered. In our calculations, it is suggested that H2O can dissociate on the perfect Li2O surface, of which the corresponding adsorption energy is 1.118eV. And the adsorption energy decrease to be 0.241eV when oxygen atom of H2O bonds to lithium atom of the slab. The final configurations are sensitive to the initial molecular orientation. By Bader charge analysis, the charge transfer from slab to adsorbed H2O/OH can be found due to the downward shift of lowest-unoccupied molecular orbital. We also analyze the vibrational frequencies at the Brillouin Zone centre for H2O molecule adsorbed on the stoichiometric surface. Due to the slightly different structure parameters, the calculated values of the vibrational frequencies of hydroxyl group range from 3824 to 3767cm−1. Our results agree well with experimental results performed in FT-IR spectrum, which showed that an absorption peak of OH group appeared at 3677cm−1 at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call